Comparison of PSO-Based Optimized Feature Computation for Automated Configuration of Multi-Sensor Systems

نویسندگان

  • Kuncup Iswandy
  • Andreas Koenig
چکیده

The design of intelligent sensor systems requires sophisticated methods from conventional signal processing and computational intelligence. Currently, a significant part of the overall system architecture still has to be manually elaborated in a tedious and time consuming process by an experienced designer. Clearly, an automatic method for auto-configuration of sensor systems would be salient. In this paper, we contribute to the optimization of the feature computation step in the overall system design, investigating multi-level thresholding (MLT) and Gaussian windowing. Our goals are to compare these two feature computation methods and two evolutionary optimization techniques, i.e., genetic algorithm (GA) and particle swarm optimization (PSO). To compare with previous research work gas sensor benchmark data is used. In the comparison of GA and PSO the latter method provided superior results of 100% recognition in generalization for thresholding, which proved to be more powerful method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic configuration and collaborative scheduling in supply chains based on scalable multi-agent architecture

Due to diversified and frequently changing demands from customers, technological advances and global competition, manufacturers rely on collaboration with their business partners to share costs, risks and expertise. How to take advantage of advancement of technologies to effectively support operations and create competitive advantage is critical for manufacturers to survive. To respond to these...

متن کامل

A multi-hop PSO based localization algorithm for wireless sensor networks

A sensor network consists of a large number of sensor nodes that are distributed in a large geographic environment to collect data. Localization is one of the key issues in wireless sensor network researches because it is important to determine the location of an event. On the other side, finding the location of a wireless sensor node by the Global Positioning System (GPS) is not appropriate du...

متن کامل

Optimized Design of Nanohole Array-Based Plasmonic Color Filters Integrating Genetic Algorithm with FDTD Solutions

Recently, significant interest has been attracted by the potential use of aluminum nanostructures as plasmonic color filters to be great alternatives to the commercial color filters based on dye films or pigments. These color filters offer potential applications in LCDs, LEDs, color printing, CMOS image sensors, and multispectral imaging. However, engineering the optical characteristics of thes...

متن کامل

Sequential and Mixed Genetic Algorithm and Learning Automata (SGALA, MGALA) for Feature Selection in QSAR

Feature selection is of great importance in Quantitative Structure-Activity Relationship (QSAR) analysis. This problem has been solved using some meta-heuristic algorithms such as: GA, PSO, ACO, SA and so on. In this work two novel hybrid meta-heuristic algorithms i.e. Sequential GA and LA (SGALA) and Mixed GA and LA (MGALA), which are based on Genetic algorithm and learning automata for QSAR f...

متن کامل

Z- Source Inverter Based On Sample Boost Optimized With Particle Swarm Optimization (PSO) Algorithm

In this paper optimal torque control (OTC) of stand-alone variable-speed small-scale wind turbine equipped with a permanent magnet synchronous generator and a switch- mode rectifier is presented. It is shown that with OTC method in standalone configuration, power coefficient could be reached to its maximum possible value, i.e. 0.48. An appropriate control algorithm based on turbine characterist...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006